
Slide 1

MONGO

Document structures

Mongodb by 10gen
NOSQL
I’m going to assume you are familiar with SQL for most of this
discussion, and that storing information in a database is a
familiar process for you. Hopefully if you need a primer on
databases this gets you excited to go investigate.
BSON storage - binary formatted JSON
Collections rather than tables
2 Documents within the same collection may have different
attributes
JSON query interface oop syntax

Add feature to existing table

SQL vs mongo
We’re going to add a discount property on customers Martial
artist website.
We sell the foo in Kung-fu
Some martial artists have dojo and resell our foo to their
students
We want to incentivize these customers with a percent off
Not everyone who buys lots of foo should get the discount, so
there should be a boolean
Percent off which we expect to be calculated later, today we are
going to set this value so we need it in the db.
How to extend schema in SQL?
Alter table
-consume the disk space for the new field
-time to complete for large number of rows
-Any code touching that table referencing that column

Slide 2

USER AS JSON

user
{ _id: BSON_id //a number like
0xb2d91ae6f8416660
{first_name: "Nathan",
last_name: "Sparks",
post_count: 42,
memberships:
{board_name: "diy_efi"}}

Mongo db in an implementation prepared to log data that
doesn't necessarily have a schema. English speech is a good
example of schemaless information.
JSON is a standard that defines data at a state in time. A sample
user of a forum example.
Hi my name is Nathan Sparks and I have 42 posts on the diy_efi
board.
Honestly I see the memberships embedded document being
deeper but this is for a sample, and I'm trying to keep this
simple.

Slide 3

JSON DOCUMENTS

{p_0: 15.0, p_1: 0, p_5: 4}

{url: andrewgauger.com, skype: andrgaug,
email: andg@andrewgauger.com, car: 25,
fb: facebook.com/DonatoArrighi}

In use in engine management this could be used in combination
with the network of sensors standard known as CAN, the
network communication protocol.
It provides banks of sensors so it would look something like this:
These could be appended a t value that defines where in the
sequence of the logging and that value would be indexed.

My personal contact information presented as a json document.
There would be quotes around the strings in the strict
convention

Slide 4

JSON QUERYING

[{_id: BSON, o2: 0.134, t_value: 1},
{_id: BSON, o2: 0.176, t_value: 2},
{_id: BSON, o2: 0.256, t_value: 3}]

db.sensors.find({t_value: {$lt: 4}})

This is an example of storing the detected value of an O2
sensor. We need to allow the sensor to warm up.
_max and _avg can be filtered until the register stars responding
within the range like an O2 sensor heated to 600 degrees.
So the engine is at the mercy of the ecu until the feedback from
the o2 sensor can keep the engine running. We need to be able
to detect this. Before that time, the ecu needs to deal with
throttle position, air bypass injection and spark.
It would be better to not log this data so the o2 return null since
these values are invalid

Slide 5

TIMESTAMPS

db.sensor.find({created_at: { $gte:
new Timestamp() - 0x10000 } })

64-bit, 32-bit ordinal resets each sec.

In this example we have put a created_at property onto our
collection and we want to have an event handler that parses
the last second worth of data.
$gte is used when you want to do conditionals. This example is
for greater than or equal to but there are plenty conditional
that are part of the spec. $ne is one I use a lot.
Event handlers using computed values for the last second
if we need to evaluate if a sensor has been offline for 150 cycles
we need listeners
timestamps would allow for analysis by time
This event handler can be used to determine a sensor is out of
range.

Slide 6

OVERHEAD

{o2: .325}

{o2: .325, map: 3.7, iac: 0, tps: 14}

Since we don't know many documents per second that we are
going to receive we set the capped collection to be tuned.
Create a collection and log a single piece of data for as long as
you want the event handler to be able to log and set the capped
collection to that many documents
Since documents performance are based on size of the
document, the best implementation can be set as a value based
on the test.

You can then gauge your performance when you do a query on
the t value for the time range the test was for. If our isolated
test revealed maximized performance tooks 3000 documents

and in implementation there were 2000 documents returned
from

Slide 7

OVERHEAD

{o2: .325}

• 3000
writes/sec

{o2: .325, map:
3.7, iac: 0, tps:

14}

• 2000
writes/sec

This also leads to analysis of overhead and performance
degredation.

Slide 8

STRUCTURED

SELECT TOP 1 * from PBAInstanceTable

SELECT * from PBATABLEINSTANCE
WHERE INVENTTRANSID = 3245

use it as an extraction layer for an existing SQL instance by
issuing sql commands and interpreting the results into a JSON
log output and output to targit {name to be determined, I know
it starts with the letter x and released in a later version of their
bi tool; the whole reason I'm implementing it in a data center
with the upgraded release version so all the new features
unlock as part of the migration] which is designed to show multi
dimensional views of predefined unputs.

In troubleshooting large sql tables I often start by query
REF1
What is a PBAInstanceTable?
Options like vaulted, or finish, length, shade are records in sql

using reference number. I would want another SQL statement
to return the collection of these configurations.

Slide 9

This table holds the variable to value relationship but instead of
rows in a SQL table, I want to be able to look at the data as if it
were a single instance of a product, since that is what it is.

Slide 10

STRUCTURED

{ _id: BSON ,
query: "SELECT TOP 1 * from
PBAInstanceTable",
headers: "INVENTTRANSID,
variable, value"
rows: "1, pba_model_number, 1"}

Here is the json representation of that query. There are
properties including
Query – the original code input into the sql query window
Headers: SQL always returns headers so we can capture this and
log it
Rows: This data is just the string representation returned from
the sql engine. This is how it would look if we were in MySQL
command line or parsing responses from sqlcmd

Slide 11

{_id: BSON,
query: "SELECT * from PBATABLEINSTANCE
WHERE INVENTTRANSID = 3245",
rows: “3245, pba_model_number, 25

3245, finish, old_brass
3245, shade, Mission Satin Etched Flared Shade$35.00
3245, upshade, Mission Satin Etched Flared Gas-Style
Shade$50.00
3245, lights, 8
3245, lengths, 36
3245, socket, turnkey
3245, vaulted, false”
}

Again just logging the output of the example from earlier. Our
output of sqlcmd uses commas and line breaks to format the
rows, and all that fits nicely into the document without having
to parse the output of the command to store the data.

Slide 12

ASYNCH

db.pba_instance.find({_id: bson}).shade

db.pba_instance.update({_id: bson} , $set :
{shade : "Mission Satin Etched Flared
Shade$35.00", state: "processed"}})

Asynchronous process at a higher level language can parse this
document and run an update statement that appends to the
model embedded document.
We’re using simple text parsing to pull the variable=value
properties and attaching them directly to the schema of the
database. The state property is to make it easier for the
asynchronous process to know what work it has left to do.

Slide 13

ASYNCH

state: "expecting value for
pba_model 25 variables
[priority, gu24_bulb,
gu24_socket_count], variables
out of range []"

The state is the addition of statemachine which allows the
document processing state to follow the document. It allows
built in error handling that happens within the document itself.
MongoDB is a great thing to add features like statemachine for
some documents.

For example your state machine might be inspecting the model
for the product and validating that all of the required
configuration variables exist and if it detects an anomaly against
the model it can set the state to something like this so the
processing engine doesn’t consume it again, and so the output
of validation can be recognized by the user.

Slide 14

STATE ERRORS

db.sensors.update({_id:
BSON}, {$set : {“state” :
“error”, error : [“variable
missing gu24”, “variable
missing bulb”]}})

State machine often uses a cleaned model by keeping to
predefined states. This would be a more likely implementation
of the statemachine

As you can see here, mongodb has built in support for arrays
embedded in the document.

Slide 15

REFERENCES

user
{_id,
name: {first: "Andrew", last: "Gauger"}}

order
{_id,
user: { "$ref" : user, "$id" : BSON}}

db.order.find({ ... }).user.name.first
References
DBRef - $ref = collection, $id = document
Embedded documents an attribute on a document data can be
a document
Solid built in referencing, and oop syntax of join is much easier
to model and concpetualize.

Slide 16

FILE IMAGE GRIDFS

GridFS for storage over 16MB documents

Images can be embedded directly on the
document

Files as large as deployment images kept under
version control

now lets say we want to tie in a shutter from an external web
cam.
we need to tie in an embedded document within the logger
with the image captured from the camera so it gets tied to the
sensors
We will also reference the image across multiple collections
easily.

BSON id begins with the timestamp so just by logging data we
get the timestamp and we can log any type of data, since the
nature of binary storage is to save raw data. GridFS is also
available if you intend to save very large dumps. GridFS would
be applicable if you wanted to locally save images of computers

under version control. Replication would come in handy but
these machines should have a network control task to limit
their bandwidth, monitored, reported.

binary data storage makes storing any types of documents. UTF-
8 seems to work well for me and file storage, and sensor data
are all well optimized

The problem comes in with the overhead of a large database
engine on top of small memory footprints. Transactional data
being tied directly to point in time better suited application.
User registrations, orders, inventory with relationships are far
better suited. Mongo facilitates this through doc ref

Slide 17

ASTRONOMY

{_id,
timestamp: 64bit_int,
distance:
356,700.83482019383433
}

sensor from laser readings nightly to apollo 1 Gw laser
measuring the distance to a trillinth. This example is data
stored as a kilometer
This is used to detect at what rate and acceleration the moon is
distancing itself from earth.
Further precision can be created by continually updating
thought the millisecond. These inserts can then be averaged.

Slide 18

STATE MACHINE

:before_transition :park => do
moving? transition[neutral]

end

:event park_brake
transition[park]

end

So we’re heading back to our car/computer example. We want
to set up a system of control for the transmission. We’re going
to set up an event handler to respond to pulling on the parking
break to shift to park. We want to ensure that the sensor data
for the vehicle in motion is compared before putting the car in
park.
Optimizing state machine to do simplest, most critical validation
just before the transition.

Slide 19

STATE MACHINE

def moving?
db.sensors.find({"speed" : {$exists:true}}).sort({_id:-

1}).limit(1)
end

{ "_id" : ObjectId("517f3fbb6e46043d8781257f"),
"speed" : 2 }

Here’s the abstracted rubyish implementation of moving?

If you don’t know ruby just know that def and end are the
beginning and end of the method
You can see many interesting features implemented in this
example
 We’re filtering our query by documents that have a property.
This is for good reason since a schemaless database is designed
to return when there isn’t a property enabled for the
document. Therefore, it returns a null. You can filter based on
null by using $ne: null but that returns both documents where
the property is set to null and for those that it doesn’t exist.

An example of the syntax for returning the most recent
document. By default sorting is done on the _id field which in
bson begins with the hexidecimal timestamp so these will be in
transactional order.

Slide 20

AGGREGATION

def avg_speed

if (m = db.sensor.count(speed:

{$exists:true})) < 1

raise "we don't know if we're

moving!"

db.sensors.aggregate([

{ $group: { _id: null,

count: { $sum: 1 } } }]) / m

end

aggregation provides powerful framework to do anything
outside of the simple sum succinctly

But what we are looking to do is at the database be able to
implement high level OOP into the database layer which is
where we need functions added to our playground. a
mapreduce might look like.

Slide 21

MAP REDUCEmap = function() {
var res = 0;
for (i = 0; i < this.marks.length; i++) {

res = res + this.marks[i];
}
var median = res/this.marks.length;
emit(this._id,{marks:this.marks,median:median});

}
reduce = function (k, values) {

values.forEach(function(value) {
result = value;

});
return result;

}

I found this map reduce example to perform statistical analysis
on a data set. Map reduce provides a powerful framework to
do anything you would want with data for analysis. Of the
aggregation framework tools, this is likely the most powerful.
Map is used to collect all the results of the query and perform a
function against the data to create a total.

Slide 22

GROUP

group({ initial: {count: 0,
running_average: 0},

reduce: function(doc, out)
{out.count++;

out.running_average+=doc.v;
},finalize: function(out)
{ out.average = out.running_average /

out.count;}});

Group allows you to reduce without the map requirement. So
you have this function defined. You can see here that out will
have a few properties on it and within the function use simple
object oriented dot notation to access properties. It is generally
easier to get started with group than map reduce. However,
always look at the map reduce implementation while building
against group. There are almost always a way to do it either
way, and I would recommend either efficiency in code because
these things get difficult to read quickly, or tuned for
production level performance.

Slide 23

JSON VS XML

[{id: BSON, product: "Cascade",
invent_trans_id: 3445},{id: BSON,
product: "Cascade", invent_trans_id:
3446},{id: BSON, product:
"Cascade", invent_trans_id: 3447]

Going to quickly compare the structure of JSON to XML. In this
example, I’ve removed the whitespace. I’ve called out the id
property as BSON in both examples to make this fair.
Remember that BSON id takes up 96 bits.

Slide 24

JSON VS XML

<nodes><node><id>BSON</id><product>Cascade</product>
<invent_trans_id> 3445</invent_trans_id></node>
<node><id>BSON</id><product>Cascade
</product><invent_trans_id>3446</invent_trans_id>
</node><node><id>BSON</id>
<product>Cascade</product><invent_trans_id> 3447
</invent_trans_id></node></nodes>

Advantages of XML over HTTP was the design pattern, but many
people AJAX without a problem. Special characters have to be
handled a bit differently.

Slide 25

REPLICA

show dbs
sensors 0.203125GB
local 0.314223GB

rs.status()
db.runCommand({ replSetGetStatus: 1 })

Notice the overhead of a collection holding 2 documents. 200
MB of storage used in this example as pure overhead so
MongoDB is not a good implementation for the firmware that I
had intended.
Within the local database references can be created to the
sensors collection using an extended dbref syntax.

Slide 26

REFERENCES

Mongodb.org

10gen.com

Diyefi.org

github.com/pluginaweek/state_machine

Questions and comments

